
Tutorial on a very simple yet useful filter :

the first order IIR filter∗

J. Arzi
E-mail : contact AT tsdconseil.fr

April 1, 2016

Foreword

This very simple numerical filter (only one tap!), also known as exponential
filter because of its impulse response, is, as its equivalent in the analogic domain
(the RC electrical filter), very easy to tune and implement.

Because of its extrem simplicity, it is often disregarded in favor of more
sophisticated filters, and yet it finds a lot of applications, and even, it is the
optimal filter for some problems. We will present in this small tutorial:

1. How to interpret intuitively this filter (from the points of view of smooth-
ing and control),

2. How to design easily this filter (computing the coefficient) according to
physical and intuitive parameters (cut-off frequency, time constant),

3. Some constraints and traps to be avoided during implementation,

4. How this filter can be understood as a Kalman filter (hence, in specific
conditions, it is an optimal estimator).

∗The most recent version of this document is available on the following web page:
http://www.tsdconseil.fr/tutos/index-en.html

1

http://www.tsdconseil.fr/tutos/index-en.html

Contents

1 Definition et interpretations 3
1.1 First formulation : as a smoother 3
1.2 Second formulation: tracking . 4

2 Implementation (in C) 4

3 Interpretation as a Kalman filter 5

Appendices 7

A Determination of the γ coefficient (for filtering purpose) 7

B Computing the optimal gain for a random walk 8

C References 8

2

1 Definition et interpretations

1.1 First formulation : as a smoother

A first way to express this filter with an equation is the following:

yn = (1− γ)yn−1 + γxn (1)

where xn is the input signal, yn the output signal, and γ the (fixed) coefficient
of the filter. This coefficient γ is also sometimes known as the ”forget factor”:
the closer γ is to 1, the faster the filter ”forgets” the old inputs.

In this interpretation, we consider the filter as a smoother: each output
sample is a weighted mean betwen the last input sample and the previously
computed value.

The relation with an electrical RC filter appears clearly if we apply this filter
to an inversed step1 (xn≤0 = 1, xn>0 = 0) :

yn = (1− γ)yn−1 = (1− γ)ny0 = (1− γ)n supposing that y0 = 1

Figure 1: Step response

In other words the response decrease according to an exponential law. If we
want to shape i as an analog RC filter, we just have to write:

1We have course the same behavior with a positive step xn≤0 = 0, xn>0 = 1, only the
computings are just simpler with an inversed step.

3

(1− γ)n = en log(1−γ) = e−t·
− log(1−γ)

Ts

where Ts is the sampling period. Hence, the factor −Ts
log 1−γ is the time con-

stant τ of the corresponding RC filter, and more generally (see appendix A
page 7), we can compute the forget factor γ as a function of the desired time
constant:

γ = 1− e−Te/τ (2)

Alternatively, we can also express γ as a function of the desired cut-off
frequency fc:

γ = 1− e−2πfc/fs (3)

où fs is the sampling frequency.
So, this filter is very easy to tune from intuitive and with physical meaning

parameters, and can also be retuned dynamically.

1.2 Second formulation: tracking

A second way (completely equivalent) to write the equation (1) is the following:

yn = yn−1 + γ(xn − yn−1) (4)

This interpretation is closer to the system control view: xn is a (noisy)
signal to be tracked, yn is the current estimation, and xn− yn−1 is the tracking
error. In other words, γ can be seen as the correction gain (or feedback) to be
applied on the error: the higher is γ, the faster the system react to changes in
the input.

We will see at the end of this tutorial, that in this form, the first order IIR
filter is actually a Kalman filter (for a very simple model and in steady state)!

2 Implementation (in C)

If one uses a processor with floating point computing available, then the imple-
mentation is trivial and correspond directly to the equation (1) :

y = (1 - gamma) * y + gamma * x;

where y is used both as an accumulator and as an output variable.

In contrary, for a fixed point implementation (that is, when one can use
only integer computing, such as is usually the case on small micro-controlers),
the forget factor γ will be represented by an integer between 0 and N = 2k, and
we will consider conventionnaly that gamma=2k correspond to γ = 1.

The equation (1) becomes then (first naive implementation):

y = ((N - gamma) * y + gamma * x) >> k;

4

The shift of k bits to the right (division by 2k) enables to simulate a fraction-
nal multiplication by γ using its integer representation gamma (in fact, γ = gamma

2k
).

The problem with this implementation is that the accumulator (and the
output variable) y is represented with the same precision as the input x, so
that the small variations of y during tracking of the input x are truncated at
each iteration, and since, according to the forget factor, the output y can evolve
slower than the input x, the filter can never converge to x!

To solve this problem, one has to represent the accumulator in fixed point,
just as the gamma coefficient. For instance, one can add k bits to the represen-
tation of y, and the update equation becomes:

y = (((N - gamma) * y) >> k) + gamma * x;

3 Interpretation as a Kalman filter

The Kalman filter is a very generic (and extensible) algorithm to compute op-
timally the (hidden) state of a system with linear evolution and for which we
have linear observations (with gaussian and memory-free noise). The general
model of this problem is what is called the state / space representation:

xn+1 = Axn +Bun + vn
yn = Cxn +Dun + wn

where :

xn is the state vector (hidden variables of the system, which we are seeking to
compute, for instance the current position of a robot),

un is the input / command vector (input that we control / known, for instance
the current that we inject in the motors),

yn is the output / observation vector (for instance, the values measured by
available sensors: accelerometers, gyroscopes, . . .),

vn,wn are (respectively) the process and observation noises (hypotheses: gaus-
sian white noise, of known covariance matrix Q and R)

A,B,C,D are the matrix defining the system evolution and observation (e.g.
linear system)

Without going into the details of the Kalman theory, in steady-state regime
(after enough iterations), for a stable and observable system, the equation to
solve this system becomes:

x̂n+1 = Ax̂n +K · (yn − Cx̂n) (5)

where K is a fixed gain (called asymptotic gain), which can be computed
from the system matrix and noise covariance matrix (using the Riccati equa-
tion). Under this shape, we can recognize almost our first order IIR filter, as
expressed in equation (4) :

• yn − Cx̂n is the tracking error (error between expected and real observa-
tions)

5

• K is our forget factor γ

Of course, the Kalman formulation is more general since it can handle multi-
dimensionnal systems (A,K et C can be matrix). That said, in the special case
of a scalar system:

xn = xn−1 + vn (6)

yn = yn−1 + wn (7)

That is, for a system representing a random walk (random movement of
vn at each iteration), observed in an imperfect manner (observation noise wn),
then the Kalman asymptotic solution coincides exactly with the first order IIR
filter:

x̂n+1 = x̂n +K · (yn − x̂n) (8)

In other words, the simple first order IIR filter is the optimal filter to track
a scalar value subject to random variations, and moreover the Kalman theory
(Riccati equation) gives us the theorical tools to compute the optimal forget
factor value.

We can show that (see annex B page 8) :

Kopt =
1

1 + 1/X
(9)

with :

X =
σ2
v

2σ2
w

(
1 +

√
1 + 4

σ2
w

σ2
v

)
(10)

where σv and σw are the standard deviations of, respectively, the process

noise (random walk) and the observation. Note that the ratio
σ2
v

σ2
w

can be inter-

preted as the signal to noise ratio (SNR), σv determining the evolution of the
signal, et σw the measurement errors.

In the figure below (figure 3 on page 7), we have plotted the optimal value

of K (that is, γ) as a funciton of the SNR
σ2
v

σ2
w

. We can note on this figure some

important special cases:

1. If we observe a value that varies slowly, but with a high observation noise
(σv � σw), then the optimal gain Kopt is low, that can be understood in
the sense that asymptoticaly (after a sufficient number of iterations), we
know well the value and we don’t need to take into account too much the
new observations.

2. In the inverse case, if we observe a quickly varying value, and with a low
observation noise (σv � σw), then Kopt becomes close to 1, meaning that
at each iteration, we take in account mostly the last observation and less
the preceding ones, which is also logical.

6

Figure 2: Optimal gain as a function of the SNR

Appendices

A Determination of the γ coefficient (for filter-
ing purpose)

The γ coefficient (forget factor) can be expressed as a function of the time
constant, by considering the step response of the filter (xn = 1, y0 = 0):

yn+1 = yn + γ(1− yn)

So:
yn+1 − 1 = yn(1− γ) + γ − 1 = (1− γ)(yn − 1)

And so:
yn = 1− (1− γ)n (11)

For an analogical RC filter, the response is of the form: y(t) = 1 − e−t/τ ,
where is the τ filter time constant, and by identifying t = nTs (with Ts =
1/fs: sampling period), we get:

(1− γ)n = e−nTs/τ

Thus :
n log 1− γ = −nTs/τ

7

And so:

γ = 1− e−Ts/τ (12)

Alternatively, we can also compute the coefficient as a function of the de-
sired cut-off frequency fc = 1

2πτ :

γ = 1− e−2πTsfc = 1− e−2πfc/fs (13)

Inversely, we can also compute the cut-off frequency as a function of the
forget factor:

fc =
−fs log (1− γ)

2π
(14)

B Computing the optimal gain for a random
walk

In the general case, the Riccati equation (discret time case) is written (see [1]):

X = Q+AXAT −A
(
I +

1

XCTR−1C

)−1

XAT (15)

and then :

Kopt =
XCT

CXCT +R
(16)

In our very simple case (scalar), A = C = 1, Q = σ2
v and R = σ2

w, and so
the equation (15) becomes:

σ2
v −X

1

1 +
σ2
w

X

= 0⇔ σ2
v =

X2

σ2
w +X

⇔ X2 − σ2
vX − σ2

vσ
2
w = 0

So:

X =
σ2
v

2

(
1 +

√
1 + 4

σ2
w

σ2
v

)
(17)

and:

Kopt =
1

1 + σ2
w/X

(18)

C References

[1] I. RIBEIRO, Kalman and Extended Kalman Filters: Concept, Derivation
and Properties, 2004

8

http://users.isr.ist.utl.pt/~mir/pub/kalman.pdf
http://users.isr.ist.utl.pt/~mir/pub/kalman.pdf

	Definition et interpretations
	First formulation : as a smoother
	Second formulation: tracking

	Implementation (in C)
	Interpretation as a Kalman filter
	Appendices
	Determination of the coefficient (for filtering purpose)
	Computing the optimal gain for a random walk
	References

